
26 570684 Ch20.qxd 3/31/04 3:00 PM Page 263

Chapter 20: Writing That First Function 263
The statements belonging to the function require curly braces to hug them
close. Those statements are the instructions that carry out what the function
is supposed to do. Therefore, the full format for the function is shown here:

(stuff)
{

statement(s);
/* more statements */

}

type name

The function must be prototyped before it can be used. You do that by either
listing the full function earlier than it’s first used in your source code or restat­
ing the function’s declaration at the start of your source code. For example:

type name(stuff);

This line, with a semicolon, is required in order to prototype the function
used later on in the program. It’s just a copy-and-paste job, but the semicolon
is required for the prototype. (If you forget, your compiler may ever so gently
remind you with a barrage of error messages.)

� Call it defining a function. Call it declaring a function. Call it doing a func­
tion. (The official term is defining a function.)

� Naming rules for functions are covered in the next section.

� Your C language library reference lists functions by using the preceding
format. For example:

int atoi(const char *s);

This format explains the requirements and product of the atoi() func­
tion. Its type is an int, and its stuff is a character string, which is how
you translate const char *s into English. (Also noted in the format is
that the #include <stdlib.h> thing is required at the beginning of
your source code when you use the atoi() function.)

How to name your functions

Functions are like your children, so, for heaven’s sake, don’t give them a dorky
name! You’re free to give your functions just about any name, but keep in mind
these notes:

� Functions are named by using letters of the alphabet and numbers.
Almost all compilers insist that your functions begin with a letter. Check
your compiler’s documentation to see whether this issue is something
your compiler is fussy about.

